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Abstract

In this paper we present a theory for porous elastic shells using the model of Cosserat surfaces. We employ the Nunz-
iato–Cowin theory of elastic materials with voids and introduce two scalar fields to describe the porosity of the shell:
one field characterizes the volume fraction variations along the middle surface, while the other accounts for the changes
in volume fraction along the shell thickness. Starting from the basic principles, we first deduce the equations of the non-
linear theory of Cosserat shells with voids. Then, in the context of the linear theory, we prove the uniqueness of solution
for the boundary initial value problem. In the case of an isotropic and homogeneous material, we determine the con-
stitutive coefficients for Cosserat shells, by comparison with the results derived from the three-dimensional theory of
elastic media with voids. To this aim, we solve two elastostatic problems concerning rectangular plates with voids:
the pure bending problem and the extensional deformation under hydrostatic pressure.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

In this paper, we employ the Nunziato–Cowin theory for elastic materials with voids in order to describe
the mechanical behavior of porous shells. For this purpose, we consider thin elastic shells modeled as Coss-
erat surfaces.

Nunziato and Cowin (1979) and Cowin and Nunziato (1983) have elaborated a theory for the treatment
of porous solids in which the matrix material is elastic and the interstices are void of material. This theory is
aimed to describe the behavior of geological and manufactured porous bodies, as well as granular materi-
als. Thus, using an idea first presented by Goodman and Cowin (1972), the bulk density of the porous body
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q is written as the product of two fields: the matrix material density field c and the volume fraction field m,
i.e.,
q ¼ cm ð0 < m 6 1Þ.
In this way, the volume fraction field represents a kinematical variable assigned to each material particle.
The interpretation of this field from the theory of media with microstructure viewpoint was given by Capriz
and Podio-Guidugli (1981) and Capriz (1989). The Nunziato–Cowin theory has been used in many works
to investigate the behavior of deformable porous bodies (see, e.g., Puri and Cowin, 1985; Ciarletta and
Ies�an, 1993; Bı̂rsan, 2003a).

Our approach to the theory of elastic shells is based on the theory of Cosserat surfaces. This theory uti-
lizes a two-dimensional model for the shell, consisting in a surface together with a deformable vector (called
director) assigned to every point. The foundations of the theory of Cosserat surfaces are discussed in the
work of Naghdi (1972), where a comparison with classical theories of shells is also presented. A modern
approach to the theory of Cosserat shells and several of its applications can be found in the books of
Antman (1995) and Rubin (2000).

A theory for Cosserat shells with voids was first presented by Bı̂rsan (2000a,b) and was employed re-
cently to determine the solution of Saint-Venant�s problem for porous cylindrical shells (see Bı̂rsan,
2005). This theory accounts for the variations of the volume fraction field along the middle surface of
the shell, but not for the changes in porosity along the shell thickness. The main purpose of the present
paper is to establish a theory of Cosserat shells with voids which allows, in addition, for the characteriza-
tion of the volume fraction variations along the thickness of the shell. To this aim, we introduce two volume
fraction fields associated to every point of the Cosserat shell: one field describes the changes in porosity
along the middle surface, while the other takes account of the porosity variations along the thickness of
the shell. The former can be interpreted as the average volume fraction through the thickness of the
three-dimensional shell, while the latter represents the average (through-the-thickness) volume fraction
gradient.

We begin our study by presenting the basic principles and deducing the governing equations for the non-
linear theory of Cosserat shells with voids. In Section 3, we confine our attention to the linear theory. In this
context, we formulate the boundary initial value problem and we prove the uniqueness of its solution, with-
out any definiteness assumptions on the internal energy of the shell. In Section 4, we deduce the constitutive
equations for Cosserat shells and plates made from isotropic and homogeneous materials with voids. Then,
we remark the uncoupling between the equations governing the extensional motions and the bending defor-
mations of plates with voids. We show that the same equations for plates can be derived starting from the
three-dimensional theory of elastic media with voids. Thus, the bending equations for plates with voids (ob-
tained here by direct approach) have been studied previously in the context of the theory of Mindlin-type
plates by Scarpetta (2002) and Bı̂rsan (2003b, in press). In Section 5, we identify the constitutive coefficients
for isotropic Cosserat shells, by comparison of certain simple solutions with corresponding exact solutions
in the three-dimensional theory of elastic materials with voids. In this order, we consider two elastostatic
problems: the pure bending of a rectangular plate and the extensional deformation of a plate under hydro-
static pressure.
2. Principles and governing equations

We begin this section by summarizing the main kinematics for the theory of Cosserat shells. Then, we
postulate the basic principles and we derive the field equations that govern the mechanics of elastic shells
with voids.



3108 M. Bı̂rsan / International Journal of Solids and Structures 43 (2006) 3106–3123
By definition, a Cosserat shell is a body C comprising a two-dimensional surface embedded in a Euclid-
ean 3-space and a single director (that is, deformable vector) attached to every point of the surface. We refer
to the monograph of Naghdi (1972) for a detailed analysis of this model.

We consider a Cosserat surface C which particles are identified by the curvilinear material coordinates ha

(a = 1,2) and we denote by S0 and S the surface of C in the reference configuration and in the present
configuration at time t, respectively. Let r and d designate, respectively, the position vector of a typical
point of S relative to a fixed origin and the director at r. Then, a motion of the Cosserat shell is defined
by
r ¼ rðha; tÞ; d ¼ dðha; tÞ; ð2:1Þ

and we assume that d is nowhere tangent to S.

We denote by aa(ha, t) the covariant base vectors along the ha-curves on S, by a3(ha, t) the unit normal to
S, and by aab and bab the first and the second fundamental forms of the surface S, respectively. We have
aa ¼
or

oha ; a3 ¼
a1 � a2

ja1 � a2j
; ða1; a2; dÞ > 0; aab ¼ aa � ab; bab ¼ a3 � aa;b; ð2:2Þ
where the comma preceding a subscript denotes partial differentiation with respect to the corresponding
coordinate. We also employ the notations
di ¼ d � ai; kia ¼ d ;a � ai. ð2:3Þ

Throughout this paper, Latin indices take the values {1, 2,3}, while Greek indices are confined to the range
{1,2}. The usual summation convention is also used.

We identify the reference surface S0 with the initial surface and we designate by R = R(ha) the position
vector, D = D(ha) the reference director at R, and let Aa and A3 be, respectively, the base vectors along the
ha-curves on S0 and the unit normal to S0. Then
Aa ¼
oR

oha ; A3 ¼
A1 � A2

jA1 � A2j
; Aab ¼ Aa � Ab;

Bab ¼ A3 � Aa;b; Di ¼ D � Ai; Kia ¼ D;a � Ai.

ð2:4Þ
We define the relative kinematic measures by
eab ¼ 1
2
ðaab � AabÞ; ci ¼ di � Di; ,ia ¼ kia � Kia. ð2:5Þ
The velocity and the director velocity vectors are given by
v ¼ _r; w ¼ _d; ð2:6Þ

where a superposed dot stands for the material derivative with respect to t, holding ha fixed.

In order to describe the porosity of a Cosserat shell with voids, we consider two independent scalar fields
m(ha, t) and v(ha, t) called the volume fraction fields (0 < m 6 1). We mention that, in the previous approaches
of the theory of Cosserat shells with voids (see Bı̂rsan, 2000a, 2005), only one porosity field has been admit-
ted, corresponding to m(ha, t), which permits for the characterization of the changes in volume fraction
along the middle surface of the three-dimensional shell. In this paper, we introduce an additional porosity
field, namely v(ha, t), which will give us information about the volume fraction variations along the shell
thickness. The significance of these two porosity fields will be clarified in Section 4.

The kinetic energy per unit mass of C in the present configuration has the expression
T ¼ 1
2

v � vþ �aw � wþ j1 _m2 þ j2 _v2
� �

; ð2:7Þ
where q = q(ha, t) is the mass per unit area of S and the inertia coefficients �a, j1, j2 are prescribed functions
of ha and independent of t. Let � = �(ha, t) be the internal energy measured per unit mass of S.
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We now postulate the basic principles which are assumed to hold for each part P of S and for every
motion of the Cosserat shell with voids.

The mass conservation principle is given by
d

dt

Z
P

qdr ¼ 0. ð2:8Þ
Balance of energy is stated in the form
d

dt

Z
P

qðT þ �Þdr ¼
Z
P

qðf � vþ l � wþ p _mþ P _vÞdrþ
Z

oP

ðN � vþM � wþ h _mþ H _vÞds. ð2:9Þ
Here, N = N(ha, t;n) is the force vector and M = M(ha, t;n) is the director force vector (also called director
couple) at the curve oP, n = naaa is the outward unit normal to oP tangent to S, while f = f(ha, t) and
l = l(ha, t) stand for the assigned force and the assigned director force vectors, respectively (see Naghdi,
1972; Green and Naghdi, 1979). The scalar fields p = p(ha, t) and P = P(ha, t) are the assigned equilibrated
body forces, while h = h(ha, t;n) and H = H(ha, t;n) are the equilibrated stresses acting on the curve oP.

Principle of director momentum has the form
d

dt

Z
P

q�awdr ¼
Z
P

ðql �mÞdrþ
Z

oP

M ds; ð2:10Þ
where m is the internal director force vector.
Balance of equilibrated force (see Nunziato and Cowin, 1979; Goodman and Cowin, 1972) is assumed in

the form
d

dt

Z
P

qj1 _mdr ¼
Z
P

ðqp � gÞdrþ
Z

oP

hds;
d

dt

Z
P

qj2 _vdr ¼
Z
P

ðqP � GÞdrþ
Z

oP

H ds; ð2:11Þ
where the scalar fields g and G stand for the internal equilibrated body forces.
We also assume that the invariance conditions under superposed rigid body motions hold, i.e., we re-

quire that all the above fields be objective. Using the same procedure as Naghdi (1972), from the balance
of energy (2.9) and the invariance conditions under superposed rigid body motions we obtain the principle
of momentum and the principle of moment of momentum, respectively, as follows:
d

dt

Z
P

qvdr ¼
Z
P

qf drþ
Z

oP

N ds ð2:12Þ
and
d

dt

Z
P

qðr� vþ �ad � wÞdr ¼
Z
P

qðr� f þ d � lÞdrþ
Z

oP

ðr�N þ d �MÞds. ð2:13Þ
Under suitable continuity assumptions, from Eqs. (2.10)–(2.12) we obtain that the fields N, M, h and H

can be expressed as
N ¼ Nana; M ¼Mana; h ¼ hana; H ¼ H ana. ð2:14Þ

Then, the local field equations corresponding to the above principles are

• equation of mass conservation
_qþ qaa � v;a ¼ 0; ð2:15Þ

• equation of momentum
Na
ja þ qf ¼ q _v; ð2:16Þ
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• equation of director momentum
Ma
ja �mþ ql ¼ q�a _w; ð2:17Þ
• equation of moment of momentum
aa �Na þ d �mþ d ;a �Ma ¼ 0; ð2:18Þ

• equations of equilibrated force
ha
ja � g þ qp ¼ qj1€m; H a

ja � Gþ qP ¼ qj2€v; ð2:19Þ
• balance of energy
q_� ¼ Na � v;a þMa � w;a þm � wþ g _mþ G _vþ ha _m;a þ H a _v;a. ð2:20Þ
In the above equations the subscript vertical bar stands for covariant differentiation with respect to the met-
ric tensor aab.

In what follows, we present the constitutive equations for Cosserat shells with voids and we deduce the
restrictions imposed on these equations by the balance of energy relation (2.20), using the procedure de-
scribed by Naghdi (1972, Section 14b).

We assume that the variables
�;Na;Ma;m; g;G; ha;H a
are functions of the set
aa; d; d ;c; m; v; m;b; v;b
and, in addition, depend also on the particle hl.
Then, the energy equation (2.20) is identically satisfied for all arbitrary values of _aa, _d, _d ;c, _m, _v, _m;b and _v;b

provided we have
� ¼ �̂ aa; d; d ;c; m; v; m;b; v;b; hl� �
;

Na ¼ q
o�̂

oaa
; Ma ¼ q

o�̂

od ;a
; m ¼ q

o�̂

od
;

g ¼ q
o�̂

om
; ha ¼ q

o�̂

om;a
; G ¼ q

o�̂

ov
; H a ¼ q

o�̂

ov;a
.

ð2:21Þ
The constitutive equations (2.21) can be further restricted by imposing the invariance conditions under
superposed rigid body motions. Thus, using the same method as Naghdi (1972, Section 13), we can write
the constitutive relations (2.21)1–4 in an alternative form, expressed in terms of tensor components.

To recapitulate, the governing equations of the nonlinear theory of Cosserat shells with voids are the
mass conservation equation (2.15), the equations of motion (2.16)–(2.18), the equations of equilibrated
force (2.19) and the constitutive equations (2.21).

We remark that Eqs. (2.15)–(2.18) have the same form as the mass conservation equation and the equa-
tions of motion from the theory of Cosserat shells (without voids). These equations can be written with the
help of tensor components, as presented by Naghdi (1972).
3. Linear theory

In this section, we deduce the equations of the linear theory of Cosserat shells with voids. Then, we for-
mulate the boundary initial value problem and we prove the uniqueness of solution.
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In the linear theory, we assume that
r ¼ Rþ u; d ¼ Dþ d; m ¼ m0 þ u; v ¼ v0 þ w ð3:1Þ

and
u ¼ eu0 ¼ uiAi ¼ uiA
i; d ¼ ed0 ¼ diAi ¼ diA

i; u ¼ eu0; w ¼ ew0; ð3:2Þ

where e is a small non-dimensional parameter. In (3.1), m0 and v0 represent the values of the volume fraction
fields m and v in the reference configuration.

Let us confine our attention hereafter to Cosserat shells of uniform thickness. This case is characterized
by the relation
D ¼ A3. ð3:3Þ

We also assume that m0 is constant and v0 = 0.

Following the classical linearization procedure (see, e.g., Naghdi, 1972; Green and Naghdi, 1979) we ob-
tain the expressions for the kinematic measures defined in (2.5) in the forms
eab ¼ 1
2
ðuajb þ ubjaÞ � Babu3; ca ¼ da þ u3;a þ Bc

auc; c3 ¼ d3;

,ba ¼ dbja � Babd3 � Bc
aucjb þ Bc

aBbcu3; ,3a ¼ d3;a þ Bc
adc þ Bc

au3;c þ Bb
aBc

buc.
ð3:4Þ
In (3.4) the subscript vertical bar denotes covariant differentiation with respect to Aab.
For the linear theory, we assume that Na, Ma, m, g, G, ha and Ha represent infinitesimal quantities of

order O(e) and they are all zero in the reference configuration. Let
Na ¼ N aiAi; Ma ¼ MaiAi; m ¼ miAi; f ¼ f iAi; l ¼ liAi
and let q0 = q0(ha) denote the mass density of the surface S0.
The linearized version of the equations of motion (2.16)–(2.18) can be written as follows:
N ab
ja � Bb

aN a3 þ q0f b ¼ q0€u
b; N a3

ja þ BabN ab þ q0f 3 ¼ q0€u
3; ð3:5Þ

Mab
ja � Bb

aMa3 � mb þ q0lb ¼ q0�a€d
b
; Ma3

ja þ BabMab � m3 þ q0l3 ¼ q0�a€d
3
; ð3:6Þ

�abðN ab � Ba
cM cbÞ ¼ 0; N a3 � ma � Ba

cM c3 ¼ 0; ð3:7Þ
where �ab is the two-dimensional alternator defined by �12 = ��21 = 1, �11 = �22 = 0.
The equations of equilibrated force (2.19) become
ha
ja � g þ q0p ¼ q0j1 €u; H a

ja � Gþ q0P ¼ q0j2
€w. ð3:8Þ
As a result of linearization, all tensors are now referred to the reference configuration and covariant differ-
entiation is with respect to Aab. In view of the moment of momentum equation (3.7)1, we can define the
symmetric tensor N 0ab by
N 0ab ¼ N 0ba ¼ N ab þ Bb
c M ca. ð3:9Þ
Using (2.21) and the invariance conditions under superposed rigid body motions, we obtain that the lin-
ear constitutive equations are
� ¼ �� eab; ci; ,ia;u;w;u;b;w;b; Aab;Bab; m0; h
l� �
;

N 0ab ¼ q0

o��

oeab
; Mai ¼ q0

o��

o,ia
; mi ¼ q0

o��

oci
;

g ¼ q0

o��

ou
; ha ¼ q0

o��

ou;a

; G ¼ q0

o��

ow
; H a ¼ q0

o��

ow;a

.

ð3:10Þ
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The partial derivative o��
oeab

is understood to have the symmetric form
1

2

o��

oeab
þ o��

oeba

� �
.

We notice that the components Na3 can be determined from the moment of momentum equation (3.7)2.
In the linear theory of Cosserat shells with the initial director given by (3.3) it is convenient to use the

kinematic measures
qba ¼ ,ba þ Babc3; q3a ¼ ,3a � Bb
acb; ð3:11Þ
and the variables
V a ¼ N a3 ¼ ma þ Ba
cM c3; V 3 ¼ m3 � BabMab. ð3:12Þ
In view of (3.4) and (3.11), in this case the geometrical relations are
eab ¼ 1
2
ðuajb þ ubjaÞ � Babu3; ca ¼ da þ u3;a þ Bb

aub;

c3 ¼ d3; qba ¼ dbja � Bc
aucjb þ Bc

aBbcu3; q3a ¼ d3;a.
ð3:13Þ
The equations of motion (3.5) and (3.6) can be written as
N ab
ja � Bb

aV a þ q0f b ¼ q0€u
b; V a

ja þ BabN ab þ q0f 3 ¼ q0€u
3; ð3:14Þ

Mab
ja � V b þ q0lb ¼ q0�a€d

b
; Ma3

ja � V 3 þ q0l3 ¼ q0�a€d
3
. ð3:15Þ
By virtue of (3.10)–(3.12), the constitutive equations can be expressed in the form
� ¼ ~� eab; ci; qia;u;w;u;b;w;b; Aab;Bab; m0; h
l� �
;

N 0ab ¼ N 0ba ¼ q0

o~�

oeab
; V i ¼ q0

o~�

oci
; Mai ¼ q0

o~�

oqia
;

g ¼ q0

o~�

ou
; ha ¼ q0

o~�

ou;a

; G ¼ q0

o~�

ow
; H a ¼ q0

o~�

ow;a

.

ð3:16Þ
Here, ~� is a quadratic function of the variables eab, ci, qia, u, w, u,b and w,b, which coefficients depend on
{Aab,Bab,m0,hl}.

The basic field equations of the linear theory of Cosserat shells with voids are the geometrical relations
(3.13), the equations of motion (3.14) and (3.15), the equations of equilibrated force (3.8) and the consti-
tutive relations (3.16). In order to formulate the boundary initial value problem, to the field equations we
must adjoin boundary and initial conditions. Let Ci (i = 1, . . ., 6) be subsets of oS0 (assumed to be a piece-
wise smooth curve) such that
C1 [ C2 ¼ C3 [ C4 ¼ C5 [ C6 ¼ oS0; C1 \ C2 ¼ C3 \ C4 ¼ C5 \ C6 ¼ ;.

The boundary conditions are
ui ¼ ~ui on C1 �T; N aina ¼ eN i
on C2 �T;

di ¼ ~di on C3 �T; Maina ¼ eM i
on C4 �T;

u ¼ ~u; w ¼ ~w on C5 �T; hana ¼ ~h; H ana ¼ eH on C6 �T;

ð3:17Þ
where T ¼ ½0;1Þ is the time interval and n = naAa is the outward unit normal to oS0, tangent to the sur-
face S0.
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We consider the following initial conditions, assumed to hold for each point ha
uiðha; 0Þ ¼ u0iðhaÞ; _uiðha; 0Þ ¼ v0iðhaÞ;
diðha; 0Þ ¼ d0iðhaÞ; _diðha; 0Þ ¼ w0iðhaÞ;
uðha; 0Þ ¼ u0ðhaÞ; _uðha; 0Þ ¼ k0ðhaÞ;
wðha; 0Þ ¼ w0ðhaÞ; _wðha; 0Þ ¼ l0ðhaÞ;

ð3:18Þ
where the functions on the right-hand sides of (3.18) are prescribed continuous functions on S0. We also
assume that ~ui, ~di, ~u and ~w are continuous functions, while eN i

, eM i
, ~h and eH are continuous in time and

piecewise regular on the appropriate domains.
We call solution of the boundary initial value problem a set of functions {ui,di,u,w} of class C1 on

�S0 �T and of class C2 on S0 �T such that they satisfy the system of field equations (3.8) and (3.13)–
(3.16), the boundary conditions (3.17) and the initial conditions (3.18). In the remaining of this section,
we shall prove a uniqueness result concerning this solution.

Let us denote by K(t) the kinetic energy and by U(t) the internal energy of the Cosserat shell, given by
KðtÞ ¼ 1

2

Z
S0

q0ðv � vþ �aw � wþ j1 _u2 þ j2
_w

2Þda; UðtÞ ¼
Z
S0

q0�da; ð3:19Þ
where da is the area element of the reference surface S0. Then, the balance of energy principle (2.9) for the
Cosserat shell can be written in the linear theory in the form
d

dt
½KðtÞ þ UðtÞ� ¼

Z
S0

q0

�
f � vþ l � wþ p _uþ P _w

�
daþ

Z
oS0

�
N � vþM � wþ h _uþ H _w

�
dl; ð3:20Þ
where dl is an element of length of the boundary curve oS0.

Remark 1. Using (3.20) we can prove by the same method as Naghdi (1972, Section 26), the uniqueness of
the solution for the boundary initial value problem, in the hypotheses that the internal energy function ~� is
always nonnegative and q0 > 0, �a > 0, j1 > 0, j2 > 0.

Our purpose is to establish an uniqueness theorem without any definiteness assumptions on the internal
energy function ~�. To this aim, let us prove the following result, which is a counterpart of Brun�s theorem
from the classical theory of elasticity (see, e.g., Gurtin, 1972, p. 217).

Theorem 1. For any t; s 2T, let
Qðt; sÞ ¼
Z
S0

q0

�
f ðtÞ � vðsÞ þ lðtÞ � wðsÞ þ pðtÞ _uðsÞ þ P ðtÞ _wðsÞ

�
da

þ
Z

oS0

�
NðtÞ � vðsÞ þMðtÞ � wðsÞ þ hðtÞ _uðsÞ þ HðtÞ _wðsÞ

�
dl; ð3:21Þ
where the dependence on the point ha of the above fields has been omitted for simplicity. Then, for every t 2T,

the following relation holds:
UðtÞ � KðtÞ ¼ 1

2

Z t

0

�
Qðt þ s; t � sÞ � Qðt � s; t þ sÞ

�
dsþ 1

2

Z
S0

�
N 0abð0Þeabð2tÞ þ V ið0Þcið2tÞ

þMaið0Þqiað2tÞ þ gð0Þuð2tÞ þ hað0Þu;að2tÞ þ Gð0Þwð2tÞ þ H að0Þw;að2tÞ
�

da

� 1

2

Z
q0

�
vð0Þ � vð2tÞ þ �awð0Þ � wð2tÞ þ j1 _uð0Þ _uð2tÞ þ j2

_wð0Þ _wð2tÞ
�

da. ð3:22Þ

S0
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Proof. Taking into account that ~� is a quadratic function, from the constitutive equations (3.16) it follows
that
_N
0abðtÞeabðsÞ þ _V

iðtÞciðsÞ þ _M
aiðtÞqiaðsÞ þ _gðtÞuðsÞ þ _h

aðtÞu;aðsÞ þ _GðtÞwðsÞ þ _H
aðtÞw;aðsÞ

¼ N 0abðsÞ _eabðtÞ þ V iðsÞ _ciðtÞ þMaiðsÞ _qiaðtÞ þ gðsÞ _uðtÞ þ haðsÞ _u;aðtÞ þ GðsÞ _wðtÞ
þ H aðsÞ _w;aðtÞ; 8t; s 2T. ð3:23Þ
For each t 2T, let us define the function E (s) by
EðsÞ ¼ N 0abðt � sÞeabðt þ sÞ þ V iðt � sÞciðt þ sÞ þMaiðt � sÞqiaðt þ sÞ þ gðt � sÞuðt þ sÞ
þ haðt � sÞu;aðt þ sÞ þ Gðt � sÞwðt þ sÞ þ H aðt � sÞw;aðt þ sÞ; s 2 ½0; t�. ð3:24Þ
In view of (3.23) and (3.24), we have
dE
ds
¼
�
N 0abðt � sÞ _eabðt þ sÞ þ V iðt � sÞ _ciðt þ sÞ þMaiðt � sÞ _qiaðt þ sÞ þ gðt � sÞ _uðt þ sÞ

þ haðt � sÞ _u;aðt þ sÞ þ Gðt � sÞ _wðt þ sÞ þ H aðt � sÞ _w;aðt þ sÞ
�
�
�
N 0abðt þ sÞ _eabðt � sÞ

þ V iðt þ sÞ _ciðt � sÞ þMaiðt þ sÞ _qiaðt � sÞ þ gðt þ sÞ _uðt � sÞ þ haðt þ sÞ _u;aðt � sÞ
þ Gðt þ sÞ _wðt � sÞ þ H aðt þ sÞ _w;aðt � sÞ

�
. ð3:25Þ
On the other hand, by virtue of the relation (3.9), the geometrical relations (3.13) and the field equations
(3.8), (3.14), (3.15) we can prove the following equality
N 0abðtÞ _eabðsÞ þ V iðtÞ _ciðsÞ þMaiðtÞ _qiaðsÞ þ gðtÞ _uðsÞ þ haðtÞ _u;aðsÞ þ GðtÞ _wðsÞ þ H aðtÞ _w;aðsÞ

¼
�
N aiðtÞ _uiðsÞ þMaiðtÞ _diðsÞ þ haðtÞ _uðsÞ þ H aðtÞ _wðsÞ

�
ja þ q0

�
f iðtÞ _uiðsÞ þ liðtÞ _diðsÞ þ pðtÞ _uðsÞ

þ P ðtÞ _wðsÞ
�
� q0

�
€uiðtÞ _uiðsÞ þ �a€d

iðtÞ _diðsÞ þ j1 €uðtÞ _uðsÞ þ j2
€wðtÞ _wðsÞ

�
; ð3:26Þ
for every t; s 2T. If we integrate Eq. (3.25) over S0 and use relations of the type (3.26), then we obtain
Z
S0

d

ds
EðsÞda ¼ Qðt � s; t þ sÞ � Qðt þ s; t � sÞ þ

Z
S0

q0

d

ds

�
vðt � sÞ � vðt þ sÞ þ �awðt � sÞ � wðt þ sÞ

þ j1 _uðt � sÞ _uðt þ sÞ þ j2
_wðt � sÞ _wðt þ sÞ

�
da. ð3:27Þ
Finally, by integrating (3.27) with respect to s from 0 to t and using the relation E(0) = 2q0�, we deduce that
(3.22) holds true. This completes the proof. h

On the basis of Theorem 1 and Eq. (3.20), we can prove the following uniqueness result.

Theorem 2. Assume that the mass density q0 and the inertia coefficients �a, j1 and j2 are positive. Then, the

boundary initial value problem (3.8), (3.13)–(3.18) has at most one solution.

Proof. Suppose that the boundary initial value problem admits two solutions. Let us denote by {ui,di,u,w}
the difference of the two solutions. By the linearity of the theory, we see that {ui,di,u,w} is a solution for
the boundary initial value problem corresponding to null assigned body forces, null boundary conditions
and null initial conditions. Then, in view of (3.20) and (3.22), we deduce
KðtÞ ¼ 0; 8t 2T. ð3:28Þ

Since q0 > 0, �a > 0, j1 > 0 and j2 > 0, the relation (3.28) yields
v ¼ w ¼ 0; _u ¼ _w ¼ 0;
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and, hence,
ui ¼ di ¼ u ¼ w ¼ 0.
The proof is complete. h
4. Isotropic and homogeneous materials

In this section, we specialize the linear theory of Cosserat shells and plates for the case of isotropic and
homogeneous materials and we find explicit constitutive equations. Then, we present a comparison between
the equations of Cosserat plates and the theory of plates derived from the three-dimensional equations for
elastic materials with voids.
4.1. Cosserat shells and plates

Henceforth, we confine our attention to Cosserat surfaces possessing holohedral isotropy (i.e., isotropy
with a center of symmetry). This material symmetry will place some restrictions on the constitutive equa-
tions. On the basis of arguments presented by Naghdi (1972) and Green and Naghdi (1979), we consider
that the constitutive equations (3.16) are further restricted by the condition
~�
�
eab;�ca; c3;�qba; q3a;u;�w;u;b;�w;b; Aab;�Bab; m0; h

l�
¼ ~�
�
eab; ca; c3; qba; q3a;u;w;u;b;w;b; Aab;Bab; m0; h

l�. ð4:1Þ
Accordingly, the response function ~� is assumed to be of the form
2q0~� ¼
�
a1AabAcd þ a2ðAacAbd þ AadAbcÞ

�
eabecd þ a3Aabcacb þ a4ðc3Þ

2 þ
�
a5AabAcd þ a6AacAbd

þ a7AadAbc
�
qabqcd þ a8Aabq3aq3b þ 2a9Aabeabc3 þ b1Aabu;au;b þ 2b2Aabq3au;b þ b3u

2

þ 2b4Aabeabuþ 2b5c3uþ b6w
2 þ 2b7Aabqabwþ b8Aabw;aw;b þ 2b9Aabcaw;b; ð4:2Þ
where a1, . . .,a9 and b1, . . .,b9 are constant constitutive coefficients. From (3.16) and (4.2) we can write the
explicit forms of the constitutive equations for N 0ab, Vi, Mai, g, ha, G and Ha. We mention that in the case
when bk = 0 (k = 1, . . ., 9) we obtain the constitutive equations for Cosserat shells (without voids).

In what follows, we shall record the full system of field equations for the case of Cosserat plates (i.e.,
initially flat Cosserat surfaces) in the linear theory and for isotropic materials.

The case of Cosserat plates is characterized by Bab = 0 and we remark that, in this situation, the bound-
ary initial value problem separates into two systems of uncoupled equations: one system involves the kine-
matic variables ua, d3, u and represents the extensional motions (stretching), while the other involves the
kinematic variables u3, da, w and describes the bending (or flexural motions) of the plate with voids.

In order to simplify the expressions, we choose the curvilinear coordinates (ha) on S0 to coincide with
the coordinates (xa) of the rectangular Cartesian frame Ox1x2x3. Then, Aab = dab (the Kronecker symbol)
and the covariant differentiation reduces to partial differentiation. The system of field equations uncouples
as follows:

(i) Extensional motion of a Cosserat plate
• geometrical relations

eab ¼ 1
2
ðua;b þ ub;aÞ; c3 ¼ d3; q3a ¼ d3;a; ð4:3Þ
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• equations of motion

N ab;a þ q0fb ¼ q0€ub; Ma3;a � V 3 þ q0l3 ¼ q0�a€d3; ð4:4Þ
• equation of equilibrated force

ha;a � g þ q0p ¼ q0j1 €u; ð4:5Þ
• constitutive equations

N ab ¼ ða1ecc þ a9c3 þ b4uÞdab þ 2a2eab;

Ma3 ¼ a8q3a þ b2u;a; V 3 ¼ a4c3 þ a9ecc þ b5u;

g ¼ b3uþ b4ecc þ b5c3; ha ¼ b1u;a þ b2q3a.

ð4:6Þ
(ii) Bending of a Cosserat plate
• geometrical relations

ca ¼ da þ u3;a; qba ¼ db;a; ð4:7Þ

• equations of motion

V a;a þ q0f3 ¼ q0€u3; Mab;a � V b þ q0lb ¼ q0�a€db; ð4:8Þ
• equation of equilibrated force

H a;a � Gþ q0P ¼ q0j2
€w; ð4:9Þ

• constitutive equations

V a ¼ a3ca þ b9w;a; Mab ¼ ða5qcc þ b7wÞdab þ a6qab þ a7qba;

G ¼ b7qcc þ b6w; H a ¼ b8w;a þ b9ca.
ð4:10Þ
The equations of the extensional theory (4.3)–(4.6) and those of the bending theory (4.7)–(4.10) for Coss-

erat plates will be compared with the results obtained from the three-dimensional theory of elastic materials
with voids in the next section.
4.2. Results from three-dimensional theory

The identification of the various tensors defined for Cosserat shells with voids (such as Nab, ha, G, . . .)
with the corresponding resultants in the theory of shells derived from the three-dimensional equations of
elastic materials with voids can be accomplished in the context of the nonlinear theory, regardless of
any material symmetry assumptions, in the manner presented by Naghdi (1972) and Green and Naghdi
(1979). Herein, for simplicity and for later reference, we restrict our attention to the case of linear plate the-
ory for isotropic and homogeneous materials and we compare the equations obtained from the two differ-
ent approaches.

Consider a three-dimensional body, made from an elastic material with voids, embedded in a Euclidean
3-space. The body is referred to a system of rectangular Cartesian axes Oxi. Let u�i denote the displacement
vector and e�ij be the strain tensor given by
e�ij ¼ 1
2
ðu�i;j þ u�j;iÞ. ð4:11Þ
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The linear equations of motion are
tji;j þ q�0f �i ¼ q�0€u
�
i ; ð4:12Þ
where tij is the stress tensor, f �i the body forces per unit mass and q�0 the reference mass density.
Let u* designate the change in volume fraction field, h�i the equilibrated stress, g* the internal equili-

brated body force and p* the assigned equilibrated body force. Then, the local form of the balance law
of equilibrated force is (see Cowin and Nunziato, 1983)
h�i;i � g� þ q�0p� ¼ q�0j€u�; ð4:13Þ
where j represents the equilibrated inertia. The functions q�0 and j are constant and positive.
The constitutive equations for isotropic and homogeneous materials with voids are
tij ¼ ke�rrdij þ 2le�ij þ bu�dij; h�i ¼ au�;i; g� ¼ be�rr þ nu�; ð4:14Þ
where k, l, b, a and n are constitutive constants.
We assume that the reference configuration of the body occupies the region
B ¼ ðx1; x2; x3Þ j ðx1; x2Þ 2 R;� h0

2
< x3 <

h0

2

� 	
;

where R is an open set in the x1Ox2 plane. The parameter h0 is sufficiently small such that the body
occupying B represents a plate of constant thickness h0. Let I ¼ h3

0=12.
From Eqs. (4.12) and (4.13) we obtain, by integration with respect to x3, the following relations
bN ab;a þ f̂ b ¼ q̂0

€̂ub; bM a3;a � bV 3 þ l̂3 ¼ q̂0â
€̂d3; ĥa;a � ĝ þ p̂ ¼ q̂0j €̂u; ð4:15Þ
and
bV a;a þ f̂ 3 ¼ q̂0
€̂u3; bM ab;a � bV b þ l̂b ¼ q̂0â

€̂db; bH a;a � bG þ bP ¼ q̂0ĵ
€̂w; ð4:16Þ
where we have introduced the notations
ûi ¼
1

h0

Z h0=2

�h0=2

u�i dx3; d̂i ¼
1

I

Z h0=2

�h0=2

x3u�i dx3; û ¼ 1

h0

Z h0=2

�h0=2

u� dx3;

ŵ ¼ 1

I

Z h0=2

�h0=2

x3u
� dx3; bN ab ¼

Z h0=2

�h0=2

tab dx3; bV i ¼
Z h0=2

�h0=2

t3i dx3;

bM ai ¼
Z h0=2

�h0=2

x3tai dx3; ĥa ¼
Z h0=2

�h0=2

h�a dx3; ĝ ¼
Z h0=2

�h0=2

g� dx3;

bH a ¼
Z h0=2

�h0=2

x3h�a dx3; bG ¼ Z h0=2

�h0=2

x3g� dx3 þ
Z h0=2

�h0=2

h�3dx3;

ð4:17Þ
and
f̂ i ¼
Z h0=2

�h0=2

q�0f �i dx3 þ 2tð�Þ3i x1; x2;
h0

2
; t

� �
; q̂0 ¼ h0q

�
0;

l̂i ¼
Z h0=2

�h0=2

q�0x3f �i dx3 þ h0tðþÞ3i x1; x2;
h0

2
; t

� �
; â ¼ I=h0;

p̂ ¼
Z h0=2

�h0=2

q�0p� dx3 þ 2h�ð�Þ3 x1; x2;
h0

2
; t

� �
; ĵ ¼ jI=h0;

bP ¼ Z h0=2

�h0=2

q�0x3p� dx3 þ h0h�ðþÞ3 x1; x2;
h0

2
; t

� �
.

ð4:18Þ
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In (4.18) we have designated by f(+) and f(�) the expressions
f ðþÞðx1; x2; x3; tÞ ¼ 1
2

�
f ðx1; x2; x3; tÞ þ f ðx1; x2;�x3; tÞ

�
;

f ð�Þðx1; x2; x3; tÞ ¼ 1
2

�
f ðx1; x2; x3; tÞ � f ðx1; x2;�x3; tÞ

�
;

for any function f defined on �B�T.

Remark 2. In view of (4.11), (4.14), (4.17) and (4.18) we observe that Eqs. (4.15) involve only the variables
u�ðþÞa , u�ð�Þ3 and u*(+), while Eqs. (4.16) involve only the variables u�ð�Þa , u�ðþÞ3 and u*(�). This property
expresses the uncoupling between the extensional and bending deformations (see, e.g., Eringen, 1967, 1998).
Thus, (4.15) represent the equations for the extensional motions, while (4.16) are the bending equations of
the theory of plates with voids.

Basic assumptions of the plate theory allow a general representation as a polynomial in x3 for the dis-
placement vector u�i and for the volume fraction field u*, but we restrict attention to the approximation
u�i ðx1; x2; x3; tÞ ¼ ûiðx1; x2; tÞ þ x3d̂iðx1; x2; tÞ; u�ðx1; x2; x3; tÞ ¼ ûðx1; x2; tÞ þ x3ŵðx1; x2; tÞ; ð4:19Þ

for every ðx1; x2; x3; tÞ 2 �B�T.

By virtue of (4.11) and (4.14)–(4.19), we obtain that the governing equations for plates with voids derived
from the three-dimensional theory are of the same form as Eqs. (4.3)–(4.10) for Cosserat plates. In making
such comparison, we identify q̂0, ûi, d̂i, û, ŵ, bN ab, bV i, bM ai, ĥa, ĝ, bH a, bG, respectively, with q0, ui, di, u, w,
Nab, Vi, Mai, ha, g, Ha, G and also
f̂ i ¼ q0fi; l̂i ¼ q0li; p̂ ¼ q0p; bP ¼ q0P ; â ¼ �a; j ¼ j1; ĵ ¼ j2. ð4:20Þ
Remark 3. In view of the identifications u ¼ û, w ¼ ŵ and the relation (4.19)2, we have
u ¼ 1

h0

Z h0=2

�h0=2

u� dx3; w ¼ 1

h0

Z h0=2

�h0=2

u�;3 dx3.
Thus, we can interpret the fields u and w associated to each point of the Cosserat surface as the average vol-
ume fraction and the average volume fraction gradient through the shell thickness, respectively. We see that
u enters the extensional problem (4.3)–(4.6), while w is involved only in the bending problem (4.7)–(4.10).

In the case when we do not take into account the variations of the volume fraction along the shell
thickness, we obtain the theory of Cosserat shells with voids presented by Bı̂rsan (2000b, 2005) which
accounts only for the changes in volume fraction along the middle surface of the shell. The equations of this
theory can be derived from the developments of the present paper, by assuming that the internal energy
response function � do not depend on w and w,b. (For the isotropic case, this is equivalent to put
b6 = b7 = b8 = b9 = 0 in the constitutive equations.)

Remark 4. We observe that the relations (4.19) are satisfied in the case of Mindlin-type plates. The equa-
tions of bending for elastic plates with voids obtained in this section have been studied recently by Scarpetta
(2002) and Bı̂rsan (2003b, in press) in the context of the theory of Mindlin-type plates.
5. Determination of the constitutive coefficients

In the constitutive equations for Cosserat shells (3.16), (4.2) most of the constitutive coefficients
a1, . . .,a9,b1, . . .,b9 can be identified by comparison of certain simple solutions with corresponding exact
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solutions in the three-dimensional theory of elastic materials with voids. The purpose of this section is to
determine the constitutive coefficients by considering two elastostatic problems: the pure bending of a rect-
angular plate with voids and the extensional deformation of a plate subject to hydrostatic pressure. For the
theory of Cosserat surfaces (without voids) the identification of constitutive coefficients has been discussed
in several works (see, e.g., Naghdi, 1972, Section 24).

5.1. Pure bending of a plate

Consider a rectangular Cosserat plate with voids in equilibrium, whose reference configuration is
bounded by the lines x1 = a1,a2 and x2 = b1,b2 in the x1Ox2 plane. We assume that the assigned body forces
are null, i.e.,
f3 ¼ lb ¼ P ¼ 0. ð5:1Þ

The plate is bent by uniform couples eM 1 and eM 2 acting along the edges x1 = constant and x2 = constant,
respectively, while the equilibrated stress vanishes on the edges. Thus, the boundary conditions are
M11 ¼ eM 1; M12 ¼ V 1 ¼ 0; H 1 ¼ 0 on x1 ¼ a1; a2;

M22 ¼ eM 2; M21 ¼ V 2 ¼ 0; H 2 ¼ 0 on x2 ¼ b1; b2;
ð5:2Þ
where eM c (c = 1,2) are prescribed constants. The relevant field equations for the bending problems of Coss-
erat plates with voids are (4.7)–(4.10). We search for a solution of these equations (in the case of equilib-
rium) such that
ca ¼ 0; q11 ¼ C1; q22 ¼ C2; q12 ¼ 0; w ¼ C3; ð5:3Þ

where C1, C2, C3 are some constants to be determined.

Using (4.7) and (5.3), we obtain
u3;11 ¼ �C1; u3;22 ¼ �C2; u3;12 ¼ 0; da ¼ �u3;a;
and, hence,
u3 ¼ �1
2
ðC1x2

1 þ C2x2
2Þ; d1 ¼ C1x1; d2 ¼ C2x2; w ¼ C3; ð5:4Þ
where we have neglected a rigid body displacement field of the Cosserat plate.
In view of (4.10) and (5.1), we see that the equilibrium equations corresponding to (4.8) are verified.

Then, we can determine the constants Ci (i = 1,2,3) from the equation of equilibrated force (4.9) and
the boundary conditions (5.2). These relations reduce to the algebraic system
ða5 þ a6 þ a7ÞC1 þ a5C2 þ b7C3 ¼ eM 1;

a5C1 þ ða5 þ a6 þ a7ÞC2 þ b7C3 ¼ eM 2;

b7C1 þ b7C2 þ b6C3 ¼ 0.

ð5:5Þ
Thus, the solution of the problem considered is given by (5.4) and (5.5).
Consider now the corresponding problem for a three-dimensional rectangular plate made from an iso-

tropic and homogeneous material with voids, which in its reference configuration occupies the region
B ¼ ðx1; x2; x3Þ j a1 < x1 < a2; b1 < x2 < b2;�
h0

2
< x3 <

h0

2

� 	
. ð5:6Þ
The differential equations which govern the equilibrium of this plate are (4.11)–(4.14) (written for the
static case) and we assume that the body forces f �i and p* are null. The boundary conditions are the
following:
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(a) there are no stresses or equilibrated stresses acting on the top and bottom surfaces of the plate, i.e.,
t3i ¼ 0; h�3 ¼ 0 on x3 ¼ �
h0

2
. ð5:7Þ
(b) the normal stresses t11 and t22 acting on the edges x1 = a1,a2 and x2 = b1,b2, respectively, create (uni-
form) net bending moments eM 1 and eM 2, given by
Z h0=2

�h0=2

x3t11 dx3 ¼ eM 1 on x1 ¼ a1; a2;

Z h0=2

�h0=2

x3t22 dx3 ¼ eM 2 on x2 ¼ b1; b2. ð5:8Þ
(c) except for the bending moments (5.8), there are no net forces, torques or bending moments acting on
the edges x1 = a1,a2 and x2 = b1,b2 of the plate. Also, the equilibrated stress is null on the edges, i.e.,
h�1 ¼ 0 on x1 ¼ a1; a2; h�2 ¼ 0 on x2 ¼ b1; b2. ð5:9Þ
The problem formulated above, concerning the pure bending of a (three-dimensional) plate with voids,
has been considered previously by Cowin and Nunziato (1983). They have obtained the following solution
for this problem
u�1 ¼ bC1x1x3; u�2 ¼ bC2x2x3;

u�3 ¼ �
1

2
ðbC1x2

1 þ bC2x2
2Þ þ ðbC1 þ bC2ÞRH 2

0

1

2
1� r

ð1� rÞRH 2
0

� �
x2

3 � l2
0 cosh

x3

l0

� �
cosh

h0

2l0

� ��1
" #

;

u� ¼ �ðbC1 þ bC2ÞRH 0 x3 � l0 sinh
x3

l0

� �
cosh

h0

2l0

� ��1
" #

;

ð5:10Þ

where bC1, bC2 are some constants, while r, H0, l0 and R are constant expressions given in terms of the con-
stitutive coefficients k, l, b, a and n by
r ¼ k
2ðkþ lÞ ; H 0 ¼

b
kþ 2l

;
1

l2
0

¼ n� bH 0

a
; R ¼ 2ll2

0

a
. ð5:11Þ
The significance of these material parameters has been discussed by Cowin and Nunziato (1983) and Puri
and Cowin (1985). Thus, r corresponds to Poisson�s ratio, l0 is a material coefficient of dimension length
and H0, R are dimensionless numbers. It is shown that l0 is always real and H0, R are positive. Let us also
introduce the geometric factor S given by (see Puri and Cowin, 1985)
S ¼ 1� 12l3
0

h3
0

h0

l0

� 2 tanh
h0

2l0

� �
ð0 < S < 1Þ. ð5:12Þ
We define the constant bC3 by the relation
bC3 ¼
1

I

Z h0=2

�h0=2

x3u
� dx3. ð5:13Þ
From the boundary conditions (5.8) and the relations (5.10)4, (5.13), we obtain the following system for
the determination of the constants bCi (i = 1,2,3)
DbC1 þ rDbC2 þ ð1� rÞDH 0
bC3 ¼ eM 1;

rDbC1 þ DbC2 þ ð1� rÞDH 0
bC3 ¼ eM 2;

ð1� rÞDH 0
bC1 þ ð1� rÞDH 0

bC2 þ
ð1� rÞD

RS
bC3 ¼ 0.

ð5:14Þ
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We have employed the notations
E ¼ lð3kþ 2lÞ
kþ l

; C ¼ Eh0

1� r2
; D ¼ I

h0

C; ð5:15Þ
where E represents Young�s modulus and D is the flexural rigidity of the plate. We remark that the relations
(5.10) yield
1

h0

Z h0=2

�h0=2

u�3 dx3 ¼ �
1

2
ðbC1x2

1 þ bC2x2
2Þ;

1

I

Z h0=2

�h0=2

x3u�a dx3 ¼ bCaxa ða not summedÞ; ð5:16Þ
where we have neglected a rigid body displacement field in writing (5.16)1.
We are now in a position to compare the two solutions for the bending problem of a rectangular plate

with voids obtained in the two different approaches. In line with the identifications made in Section 4.2,
from the relations (4.17), (5.4), (5.13) and (5.16) we deduce that Ci ¼ bCi (i = 1,2,3). Then, in view of the
system of equations (5.5) and (5.14), the two solutions coincide provided we set
a5 þ a6 þ a7 ¼ D; a5 ¼ rD; b7 ¼ ð1� rÞDH 0; b6 ¼
ð1� rÞD

RS
. ð5:17Þ
Using the same arguments as Naghdi (1972), we choose a6 = a7 and, hence, from (5.17) we obtain
a5 ¼ rD; a6 ¼ a7 ¼
1� r

2
D; b6 ¼

ð1� rÞD
RS

; b7 ¼ ð1� rÞDH 0. ð5:18Þ
5.2. Extensional deformation of a plate subject to uniform hydrostatic pressure

Let us consider a rectangular Cosserat plate in equilibrium bounded by the lines x1 = a1,a2 and
x2 = b1,b2. The plate suffers an extensional deformation due to constant forces per unit length eN 1 andeN 2 along the edges x1 = a1,a2 and x2 = b1,b2, respectively, and to a uniform hydrostatic pressure. We as-
sume that fb = p = 0. In view of (4.4) and (4.5), the equilibrium equations for this case are
N ab;a ¼ 0; Ma3;a � V 3 þ q0l3 ¼ 0; ha;a � g ¼ 0; ð5:19Þ

where q0l3 is a constant which accounts for the uniform pressure prescribed on the surfaces of the plate and
its significance will be clarified later in this section.

The appropriate boundary conditions are
N 11 ¼ eN 1; N 12 ¼ M13 ¼ 0; h1 ¼ 0 on x1 ¼ a1; a2;

N 22 ¼ eN 2; N 21 ¼ M23 ¼ 0; h2 ¼ 0 on x2 ¼ b1; b2.
ð5:20Þ
We search for a solution of this problem such that
e11 ¼ K1; e22 ¼ K2; e12 ¼ 0; c3 ¼ K3; u ¼ K4; ð5:21Þ

where Ki (i = 1, . . ., 4) are constants. Then, from the geometrical relations (4.3) we find that
u1 ¼ K1x1; u2 ¼ K2x2; d3 ¼ K3; u ¼ K4; ð5:22Þ

except for a rigid body displacement field. Using the constitutive relations (4.6) and imposing that the
boundary conditions (5.20) and the equilibrium equations (5.19) be satisfied, we obtain that the constants
Ki (i = 1, . . ., 4) verify the algebraic system of equations
ða1 þ 2a2ÞK1 þ a1K2 þ a9K3 þ b4K4 ¼ eN 1; a1K1 þ ða1 þ 2a2ÞK2 þ a9K3 þ b4K4 ¼ eN 2;

a9K1 þ a9K2 þ a4K3 þ b5K4 ¼ q0l3; b4K1 þ b4K2 þ b5K3 þ b3K4 ¼ 0.
ð5:23Þ
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Relations (5.22) and (5.23) give the solution of the problem.
In what follows we consider the same problem formulated for a three-dimensional plate of constant

thickness h0. Thus, we study the equilibrium of a plate with voids which occupies the region (5.6) in its ref-
erence configuration. The body forces f �i ; p

� are vanishing and the boundary conditions are specified by
t11 ¼ eN 1=h0; t12 ¼ t13 ¼ 0; h1 ¼ 0 on x1 ¼ a1; a2;

t22 ¼ eN 2=h0; t21 ¼ t23 ¼ 0; h2 ¼ 0 on x2 ¼ b1; b2;

t33 ¼ �p0; t31 ¼ t32 ¼ 0; h3 ¼ 0 on x3 ¼ �h0=2;

ð5:24Þ
where p0 designates the uniform hydrostatic pressure acting on the top and bottom surfaces of the plate.
The field equations are (4.11)–(4.14), written for the static case.

We search for the solution of this elastostatic problem in the form
u�i ¼ bK ixi ði not summedÞ; u� ¼ bK 4; ð5:25Þ

where bK i (i = 1, . . ., 4) are some constants. By virtue of (4.11) and (4.14), we obtain that the boundary con-
ditions (5.24) and the equilibrium equations reduce to the relations
ðkþ 2lÞbK 1 þ kbK 2 þ kbK 3 þ bbK 4 ¼ eN 1=h0; kbK 1 þ ðkþ 2lÞbK 2 þ kbK 3 þ bbK 4 ¼ eN 2=h0;

kbK 1 þ kbK 2 þ ðkþ 2lÞbK 3 þ bbK 4 ¼ �p0; bbK 1 þ bbK 2 þ bbK 3 þ nbK 4 ¼ 0;
ð5:26Þ
which allow us to determine the constants bK i (i = 1, . . ., 4). For the solution (5.25), we have
1

h0

Z h0=2

�h0=2

u�a dx3 ¼ bK axa ða not summedÞ;

1

I

Z h0=2

�h0=2

x3u�3 dx3 ¼ bK 3;
1

h0

Z h0=2

�h0=2

u� dx3 ¼ bK 4.

ð5:27Þ
We are now able to compare the two solutions obtained in the two different approaches of the problem
considered. In view of the identifications made in Section 4.2 and the relations (4.17)1–3, (5.22) and (5.27),
we derive that Ki ¼ bK i (i = 1, . . ., 4). Using (4.18)2, (4.20)2 and the boundary conditions (5.24) we see that,
in our case, we have
q0l3 ¼ �h0p0. ð5:28Þ

Hence, by comparison between the systems (5.23) and (5.26), we may identify
a1 þ 2a2 ¼ a4 ¼ ðkþ 2lÞh0; a1 ¼ a9 ¼ kh0; b4 ¼ b5 ¼ bh0; b3 ¼ nh0. ð5:29Þ

Using the notations (5.15), the relations (5.29) can be written as
a1 ¼ a9 ¼
rð1� rÞ
1� 2r

C; a2 ¼
1� r

2
C; a4 ¼

ð1� rÞ2

1� 2r
C; b3 ¼ nh0; b4 ¼ b5 ¼ bh0.

ð5:30Þ

This completes our consideration of simple elastostatic problems for plates with voids. To recapitulate,

in (5.18) and (5.30) we have determined the constitutive coefficients a1, a2, a4, a5, a6, a7, a9 and b3, b4, b5, b6,
b7 . We mention that the values for the coefficients ak obtained in (5.18)1,2 and (5.30)1–3 coincide with the
identification of the constitutive coefficients given by Naghdi (1972) for Cosserat surfaces without voids.

Two other coefficients, namely b2 and b9, can be identified by comparison between the constitutive equa-
tions (4.6), (4.10) and the relations obtained by substituting (4.11), (4.14) and (4.19) into (4.17). This pro-
cedure suggests the values
b2 ¼ 0; b9 ¼ 0. ð5:31Þ
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The constitutive coefficients a3, a8, b1 and b8 remain unspecified and they have the orders of magnitude
a3 ¼ OðCÞ; a8 ¼ OðDÞ; b1 ¼ OðCÞ; b8 ¼ OðDÞ. ð5:32Þ

Similar arguments as those presented by Naghdi (1972, Section 24), suggest that it is preferable to allow
these coefficients to have different possible values, depending on the particular context in which the theory
of Cosserat shells is used.

Finally we remark that, although the values of ak and bk (k = 1, . . ., 9) have been determined for Cosserat
plates, the identification of the constitutive coefficients (5.18), (5.30)–(5.32) is also valid for shells. Indeed,
this fact can be deduced from the constitutive equations for Cosserat shells (3.16), (4.2) and the develop-
ments of Section 4.1.
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